High efficiency multijunction VCSEL arrays for 3D sensing

Matthew M. Dummer, Benjamin V. Olson, Karim Tatah, Klein Johnson, Mary Hibbs-Brenner

Vixar Inc. 2355 Polaris Ave N. Suite 100 Plymouth, MN 55447

Opto Semiconductors

VCSELs in 3D sensing

- 3D optical sensors are becoming widespread in consumer, industrial, and automotive applications
- Several approaches depending on required range and resolution:
 - Structured light (short distance)
 - Time of flight (medium distance)
 - LiDAR (long distance)

VCSEL TOF illuminator

VCSEL based sensors:

Benefits:

- Beam quality (small spot, low divergence)
- Narrow spectral width
- Wavelength stability
- Fast rise time

Challenges:

- Power scaling
- Conversion efficiency (compared to edge emitters)

940nm VCSEL development at Vixar

940nm wavelength preferred for 3D sensors

- Low interference from ambient light
- Outside visible wavelength range
- Compatible with CMOS cameras

Rapid improvements in 940nm VCSEL performance

- Slope efficiency improvement from 0.85 W/A \rightarrow 1.1 W/A
- $42\% \rightarrow 53\%$ power conversion last year •

Recent introduction of multijunction VCSELs

- Slope efficiency: >3 W/A
- Power conversion: >60%

Vixar 940nm VCSEL performance history Single aperture VCSELs at room temp, CW Triple Power (mW) junction Sinale junction

Multijunction VCSEL design

Motivation:

- Increase gain volume by periodically stacking active regions in cavity
- Carrier regeneration in tunnel junctions → increased slope efficiency
- Re-optimize gain & loss in cavity for net efficiency improvement
- Trade off voltage and current for driver compatibility (faster rise time)

Challenges:

- Requires low resistance & low absorption tunnel junction
- Precise layer tuning to align QWs and TJ with standing wave

- Top emitting VCSEL with backside cathode
- Oxide aperture confinement
- p- and n-type AlGaAs DBRs
- Strained InGaAs MQWs
- Low resistance n+/p+ tunnel junction

Compatible with high volume fabrication:

- n-type GaAs substrates
- MOCVD grown epi
- 6-inch wafer processing

Single, double, triple junction 940nm comparison

- Single 10um aperture VCSEL characterization
 - Continuous wave, room temp operation
- Slope efficiency and voltage scale with junctions
 - 2.1 W/A → 160% DQE
 - 3.15 W/A → 240% DQE
- Higher power & higher efficiency achieved
 - 60% PCE for triple junction VCSEL

Peak performance comparison:

Design	PCE	Power (mW)	Voltage (V)	Slope Eff. (mW/mA)
Single	52%	5.0	1.9	1.1
Double	59%	10	3.3	2.10
Triple	60%	17	4.6	3.15

VCSEL array performance (single, double, & triple junction)

Short pulsed operation

High power pulsing experiments conducted with GaN-FET based driver

Triple Junction VCSEL array driven with 3.6ns pulses, 0.1% duty cycle

- Peak pulse power of 147W recorded for 64 A peak current
- No rollover observed (power limited by driver)

Equivalent irradiance: 281W/mm²

Emission area: 0.77 x 0.68 mm²

7 High efficiency multijunction VCSEL arrays for 3D sensing SPIE Photonics West 2020

Conclusion

Demonstrated high power, high efficiency multijunction VCSELs at 940nm

- Measured slope efficiency: 2.1 W/A & 3.16 W/A (double & triple junction)
- Differential quantum efficiency: 160% & 240%
- 60% power conversion efficiency achieved
 - Highest reported for a multijunction VCSEL

Demonstrated high power VCSEL arrays in small footprint (0.9 x 0.9 mm)

- 9W output power with >50% efficiency & only 3.5A required
- >100W peak power achievable with short pulsed operation (peak irradiance 281W/mm²)

Multijunction VCSELs are promising devices for time-of-flight and LiDAR applications

Opto Semiconductors